Alkalinity, $\mathbf{m g} / \mathrm{L}$ as $\mathrm{CaCO}_{3}=\frac{\text { (Titrant Volume, mL)(Acid Normality)(50,000) }}{\text { Sample Volume, } \mathrm{mL}}$
Amps $=\frac{\text { Volts }}{\text { Ohms }}$
Area of Circle* $=(0.785)\left(\right.$ Diameter $\left.^{2}\right)$
Area of Circle $=(3.14)\left(\right.$ Radius $\left.^{2}\right)$
Area of Cone (lateral area) $=(3.14)($ Radius $) \sqrt{\text { Radius }^{2}+\text { Height }^{2}}$
Area of Cone (total surface area) $=(3.14)($ Radius $)\left(\right.$ Radius $\left.+\sqrt{\text { Radius }^{2}+\text { Height }^{2}}\right)$
Area of Cylinder (total exterior surface area) $=[$ End \#1 SA $]+[$ End \#2 SA $]+$ [(3.14)(Diameter)(Height or Depth)] Where SA = surface area

Area of Rectangle* $=($ Length $)($ Width $)$
Area of Right Triangle* $=\frac{(\text { Base })(\text { Height })}{2}$
Average (arithmetic mean) $=\frac{\text { Sum of All Terms }}{\text { Number of Terms }}$
Average (geometric mean) $=\left[\left(\mathrm{X}_{1}\right)\left(\mathrm{X}_{2}\right)\left(\mathrm{X}_{3}\right)\left(\mathrm{X}_{4}\right)\left(\mathrm{X}_{n}\right)\right]^{1 / n} \quad$ The n th root of the product of n numbers
Biochemical Oxygen Demand (seeded), mg/L=
[(Initial DO, mg/L) - (Final DO, mg/L) - (Seed Correction, mg/L)] [300 mL]
Sample Volume, mL
Biochemical Oxygen Demand (unseeded), mg/L=
[(Initial DO, mg/L) - (Final DO, mg/L)][300 mL]
Sample Volume, mL
Blending or Three Normal Equation $=\left(C_{1} \times V_{1}\right)+\left(C_{2} \times V_{2}\right)=\left(C_{3} \times V_{3}\right) \quad$ Where $V_{1}+V_{2}=V_{3} ; C=$ concentration, $V=$ volume or flow; Concentration units must match; Volume units must match
\# CFU/100mL $=\frac{[(\# \text { of Colonies on Plate })(100)]}{\text { Sample Volume, } \mathrm{mL}}$

Chemical Feed Pump Setting, \% Stroke $=\frac{\text { Desired Flow }}{\text { Maximum Flow }} \times 100 \%$

Chemical Feed Pump Setting, mL/min =

> (Flow, MGD)(Dose, mg/L)(3.785 L/gal)(1,000,000 gal/MG)
(Feed Chemical Density, mg/mL)(Active Chemical, \% expressed as a decimal)(1,440 min/day)
Chemical Feed Pump Setting, mL/min =
(Flow, $\mathrm{m}^{3} /$ day)(Dose, mg/L)
$\overline{\text { (Feed Chemical Density, g/cm }{ }^{3} \text {)(Active Chemical, \% expressed as a decimal)(1,440 min/day) }}$
Circumference of Circle $=(3.14)($ Diameter $)$
Composite Sample Single Portion $=\frac{(\text { Instantaneous Flow)(Total Sample Volume) }}{(\text { Number of Portions)(Average Flow) }}$
Cycle Time, $\boldsymbol{\operatorname { m i n }}=\frac{\text { Storage Volume, gal }}{(\text { Pump Capacity, gpm) }-(\text { Wet Well Inflow, gpm })}$
Cycle Time, $\min =\frac{\text { Storage Volume, } \mathrm{m}^{3}}{\left(\text { Pump Capacity, } \mathrm{m}^{3} / \mathrm{min}\right)-\left(\text { Wet Well Inflow, } \mathrm{m}^{3} / \mathrm{min}\right)}$
Degrees Celsius $=\frac{\left({ }^{\circ} \mathrm{F}-32\right)}{1.8}$
Degrees Fahrenheit $=\left({ }^{\circ} \mathrm{C}\right)(1.8)+32$
Detention Time $=\frac{\text { Volume }}{\text { Flow }} \quad$ Units must be compatible
Dilution or Two Normal Equation $=\left(\mathrm{C}_{1} \times \mathrm{V}_{1}\right)=\left(\mathrm{C}_{2} \times \mathrm{V}_{2}\right) \quad$ Where $\boldsymbol{C}=$ Concentration, $\mathrm{V}=$ volume or flow; Concentration units must match; Volume units must match
Electromotive Force, volts* $=($ Current, amps)(Resistance, ohms)
Feed Rate, $\mathrm{Ib} / \mathrm{day}^{*}=\frac{(\text { Dosage, } \mathrm{mg} / \mathrm{L})(\text { Flow, MGD)(8.34 lb/gal) }}{\text { Purity, } \% \text { expressed as a decimal }}$
Feed Rate, $\mathbf{k g} /$ day $^{*}=\frac{(\text { Dosage, } \mathrm{mg} / \mathrm{L})\left(\text { Flow Rate, } \mathrm{m}^{3} / \text { day }\right)}{(\text { Purity, } \% \text { expressed as a decimal) }(1,000)}$
Filter Backwash Rate, gpm $/ \mathrm{ft}^{2}=\frac{\text { Flow, } \mathrm{gpm}}{\text { Filter Area, } \mathrm{ft}^{2}}$
Filter Backwash Rate, L/sec $/ \mathrm{m}^{2}=\frac{\text { Flow, } \mathrm{L} / \mathrm{sec}}{\text { Filter Area, } \mathrm{m}^{2}}$

Filter Backwash Rise Rate, $\mathbf{i n} / \mathbf{m i n}=\frac{\left(\text { Backwash Rate, } \mathrm{gpm} / \mathrm{ft}^{2}\right)(12 \mathrm{in} / \mathrm{ft})}{7.48 \mathrm{gal} / \mathrm{ft}^{3}}$
Filter Backwash Rise Rate, $\mathbf{c m} / \mathbf{m i n}=\frac{\text { Water Rise, } \mathrm{cm}}{\text { Time, } \mathrm{min}}$
Filter Yield, $\mathrm{Ib} / \mathrm{hr} / \mathrm{ft}^{2}=\frac{\text { (Solids Loading, } \mathrm{Ib} / \text { day })(\text { Recovery, \% expressed as a decimal) }}{\left.\text { (Filter Operation, hr/day)(Area, } \mathrm{ft}^{2}\right)}$
Filter Yield, kg/hr/m ${ }^{2}=$
$\frac{\text { (Solids Concentration, \% expressed as a decimal)(Sludge Feed Rate, L/hr)(10) }}{\text { (Surface Area of Filter, } \mathrm{m}^{2} \text {) }}$
Flow Rate, $\mathrm{ft}^{3} / \mathrm{sec}^{*}=\left(\right.$ Area, $\left.\mathrm{ft}^{2}\right)($ Velocity, $\mathrm{ft} / \mathrm{sec})$
Flow Rate, $\mathrm{m}^{3} / \mathbf{s e c}^{*}=\left(\right.$ Area, $\left.\mathrm{m}^{2}\right)($ Velocity, $\mathrm{m} / \mathrm{sec})$
Food $/$ Microorganism Ratio $=\frac{\mathrm{BOD}_{5}, \mathrm{lb} / \text { day }}{\mathrm{MLVSS}, \mathrm{lb}}$
Food/Microorganism Ratio $=\frac{\mathrm{BOD}_{5}, \mathrm{~kg} / \mathrm{day}}{\mathrm{MLVSS}, \mathrm{kg}}$
Force, $\mathbf{l b}^{*}=($ Pressure, psi$)\left(\right.$ Area, $\left.\mathrm{in}^{2}\right)$
Force, newtons* $=($ Pressure, pascals $)\left(\right.$ Area, $\left.\mathrm{m}^{2}\right)$
Hardness, as $\mathrm{mg} \mathrm{CaCO}_{3} / \mathrm{L}=\frac{(\text { Titrant Volume, } \mathrm{mL})(1,000)}{\text { Sample Volume, } \mathrm{mL}}$ Only when the titration factor is 1.00 of EDTA
(Flow, gpm)(Head, ft)
Horsepower, Brake, $\mathbf{h p}=\frac{(\text { Flow, } \mathrm{gpm})(\text { Head, } \mathrm{ft})}{(3,960)(\text { Pump Efficiency, } \% \text { expressed as a decimal) })}$
Horsepower, Brake, $\mathbf{k W}=\frac{(9.8)\left(\text { Flow, } \mathrm{m}^{3} / \mathrm{sec}\right)(\mathrm{Head}, \mathrm{m})}{\text { (Pump Efficiency, } \% \text { expressed as a decimal) }}$
Horsepower, Motor, hp =
(Flow, gpm)(Head, ft)
$(3,960)$ (Pump Efficiency, \% expressed as a decimal)(Motor Efficiency, \% expressed as a decimal)

Horsepower, Motor, kW =
(9.8)(Flow, $\left.\mathrm{m}^{3} / \mathrm{sec}\right)($ Head, m)
(Pump Efficiency, \% expressed as a decimal)(Motor Efficiency, \% expressed as a decimal)

Horsepower, Water, $\mathbf{h p}=\frac{(\text { Flow, gpm })(\text { Head, } \mathrm{ft})}{3,960}$
Horsepower, Water, kW = (9.8)(Flow, m $\left.{ }^{3} / \mathrm{sec}\right)(\mathrm{Head}, \mathrm{m})$
Hydraulic Loading Rate, gpd/ftt ${ }^{2}=\frac{\text { Total Flow Applied, gpd }}{\text { Area, } \mathrm{ft}^{2}}$
Hydraulic Loading Rate, $\mathrm{m}^{3} / \mathrm{day} / \mathrm{m}^{2}=\frac{\text { Total Flow Applied, } \mathrm{m}^{3} / \text { day }}{\text { Area, } \mathrm{m}^{2}}$
Loading Rate, Ib/day* $=($ Flow, MGD)(Concentration, $\mathrm{mg} / \mathrm{L})(8.34 \mathrm{lb} / \mathrm{gal})$
Loading Rate, $\mathbf{k g} /$ day $^{*}=\frac{\left(\text { Flow, } \mathrm{m}^{3} / \text { day }\right)(\text { Concentration, } \mathrm{mg} / \mathrm{L})}{1,000}$
Mass, $\mathbf{l b}^{*}=($ Volume, MG$)($ Concentration, $\mathrm{mg} / \mathrm{L})(8.34 \mathrm{lb} / \mathrm{gal})$
Mass, $\mathbf{k g}^{*}=\frac{\left(\text { Volume, } \mathrm{m}^{3}\right)(\text { Concentration, } \mathrm{mg} / \mathrm{L})}{1,000}$
Mean Cell Residence Time or Solids Retention Time, days $=$
(Aeration Tank TSS, lb) + (Clarifier TSS, Ib)
(TSS Wasted, Ib/day)+(Effluent TSS, Ib/day)
Mean Cell Residence Time or Solids Retention Time, days $=$
(Aeration Tank TSS, kg) + (Clarifier TSS, kg)
(TSS Wasted, kg/day) + (Effluent TSS, kg/day)
Milliequivalent $=(\mathrm{mL})($ Normality $)$
Molarity $=\frac{\text { Moles of Solute }}{\text { Liters of Solution }}$
Motor Efficiency, $\%=\frac{\text { Brake hp }}{\text { Motor hp }} \times 100 \%$
Normality $=\frac{\text { Number of Equivalent Weights of Solute }}{\text { Liters of Solution }}$
Number of Equivalent Weights $=\frac{\text { Total Weight }}{\text { Equivalent Weight }}$
Number of Moles $=\frac{\text { Total Weight }}{\text { Molecular Weight }}$

Organic Loading Rate-RBC, Ib SBOD $/$ day $/ 1,000 \mathrm{ft}^{2}=\frac{\text { Organic Load, } \mathrm{lb} \mathrm{SBOD}_{5} / \mathrm{day}}{\text { Surface Area of Media, } 1,000 \mathrm{ft}^{2}}$
Organic Loading Rate-RBC, $\mathbf{k g}$ SBOD $_{5} / \mathbf{m}^{2}$ days $=\frac{\text { Organic Load, } \mathrm{kg} \mathrm{SBOD}_{5} / \text { day }}{\text { Surface Area of Media, } \mathrm{m}^{2}}$
Organic Loading Rate-Trickling Filter, $\mathrm{Ib} \mathrm{BOD}_{5} /$ day $/ 1,000 \mathrm{ft}^{3}=\frac{\text { Organic Load, } \mathrm{lb} \mathrm{BOD}_{5} / \text { day }}{\text { Volume, } 1,000 \mathrm{ft}^{3}}$
Organic Loading Rate-Trickling Filter, $\mathrm{kg} / \mathrm{m}^{3}$ days $=\frac{\text { Organic Load, } \mathrm{kg} \mathrm{BOD}_{5} / \mathrm{day}}{\text { Volume, } \mathrm{m}^{3}}$
Oxygen Uptake Rate or Oxygen Consumption Rate, $\mathrm{mg} / \mathrm{L} / \mathrm{min}=\frac{\text { Oxygen Usage, } \mathrm{mg} / \mathrm{L}}{\text { Time, } \mathrm{min}}$
Population Equivalent, Organic $=\frac{(\text { Flow, MGD })(B O D, \mathrm{mg} / \mathrm{L})(8.34 \mathrm{lb} / \mathrm{gal})}{0.17 \mathrm{lb} \mathrm{BOD} / \text { day } / \text { person }}$
Population Equivalent, Organic $=\frac{\left.\text { (Flow, } \mathrm{m}^{3} / \text { day }\right)(\mathrm{BOD}, \mathrm{mg} / \mathrm{L})}{(1,000)(0.077 \mathrm{~kg} \mathrm{BOD} / \text { day } / \text { person })}$
Power, $\mathbf{k W}=\frac{(\text { Flow, L/sec })(\text { Head, } \mathrm{m})(9.8)}{1,000}$
Recirculation Ratio-Trickling Filter $=\frac{\text { Recirculated Flow }}{\text { Primary Effluent Flow }}$
Reduction of Volatile Solids, $\%=\left(\frac{\text { VS in- VS out }}{\text { VS in- }(\mathrm{VS} \text { in } \times \text { VS out })}\right) \times 100 \%$
All information (In and Out) must be in decimal form

Removal, $\%=\left(\frac{\ln -\text { Out }}{\ln }\right) \times 100 \%$
Return Rate, \% $=\frac{\text { Return Flow Rate }}{\text { Influent Flow Rate }} \times 100 \%$
Return Sludge Rate-Solids Balance, MGD $=\frac{(\text { MLSS, } m g / L)(\text { Flow Rate, MGD) }}{(\text { RAS Suspended Solids, mg/L) }-(M L S S, m g / L)}$
Slope, $\%=\frac{\text { Drop or Rise }}{\text { Distance }} \times 100 \%$
Sludge Density Index $=\frac{100}{\text { SVI }}$
Sludge Volume Index, $\mathrm{mL} / \mathrm{g}=\frac{\left(\mathrm{SSV}_{30}, \mathrm{~mL} / \mathrm{L}\right)(1,000 \mathrm{mg} / \mathrm{g})}{\mathrm{MLSS}, \mathrm{mg} / \mathrm{L}}$

Solids, $\mathrm{mg} / \mathrm{L}=\frac{(\text { Dry Solids, } \mathrm{g})(1,000,000)}{\text { Sample Volume, } \mathrm{mL}}$
Solids Capture, \% (Centrifuges) =
$\left[\frac{\text { Cake TS, \% }}{\text { Feed Sludge TS, \% }}\right] \times\left[\frac{(\text { Feed Sludge TS, \% })-(\text { Centrate TSS, \%) })}{(\text { Cake TS, \%) }-(\text { Centrate TSS, \%) }}\right] \times 100 \%$
Solids Concentration, mg/L $=\frac{\text { Weight, } \mathrm{mg}}{\text { Volume, } \mathrm{L}}$
Solids Loading Rate, $\mathrm{Ib} / \mathrm{day}^{2} / \mathrm{ft}^{2}=\frac{\text { Solids Applied, } \mathrm{Ib} / \mathrm{day}}{\text { Surface Area, } \mathrm{ft}^{2}}$
Solids Loading Rate, $\mathrm{kg} /$ day $/ \mathrm{m}^{2}=\frac{\text { Solids Applied, } \mathrm{kg} / \mathrm{day}}{\text { Surface Area, } \mathrm{m}^{2}}$
Solids Retention Time: see Mean Cell Residence Time
Specific Gravity $=\frac{\text { Specific Weight of Substance, Ib/gal }}{8.34 \mathrm{lb} / \mathrm{gal}}$
Specific Gravity $=\frac{\text { Specific Weight of Substance, } \mathrm{kg} / \mathrm{L}}{1.0 \mathrm{~kg} / \mathrm{L}}$
Specific Oxygen Uptake Rate or Respiration Rate, $(\mathrm{mg} / \mathrm{g}) / \mathrm{hr}=\frac{(\mathrm{OUR}, \mathrm{mg} / \mathrm{L} / \mathrm{min})(60 \mathrm{~min})}{(\mathrm{MLVSS}, \mathrm{g} / \mathrm{L})(1 \mathrm{hr})}$
Surface Loading Rate or Surface Overflow Rate, gpd/ft ${ }^{2}=\frac{\text { Flow, gpd }}{\text { Area, } \mathrm{ft}^{2}}$
Surface Loading Rate or Surface Overflow Rate, $\mathrm{Lpd} / \mathrm{m}^{2}=\frac{\text { Flow, } \mathrm{Lpd}}{\text { Area, } \mathrm{m}^{2}}$
Total Solids, $\%=\frac{(\text { Dried Weight, } \mathrm{g})-(\text { Tare Weight, } \mathrm{g})}{(\text { Wet Weight, } \mathrm{g})-(\text { Tare Weight, } \mathrm{g})} \times 100 \%$
Velocity, $\mathrm{ft} / \mathrm{sec}=\frac{\text { Flow Rate, } \mathrm{ft}^{3} / \mathrm{sec}}{A r e a, \mathrm{ft}^{2}}$
Velocity, $\mathrm{ft} / \mathbf{s e c}=\frac{\text { Distance, } \mathrm{ft}}{\text { Time, sec }}$
Velocity, $\mathrm{m} / \mathrm{sec}=\frac{\text { Flow Rate, } \mathrm{m}^{3} / \mathrm{sec}}{\text { Area, } \mathrm{m}^{2}}$
Velocity, $\mathrm{m} / \mathrm{sec}=\frac{\text { Distance, } m}{\text { Time, sec }}$

Volatile Solids, $\%=\left[\frac{(\text { Dry Solids, } \mathrm{g})-(\text { (Fixed Solids, g) }}{(\text { Dry Solids, g) }}\right] \times 100 \%$
Volume of Cone ${ }^{*}=(1 / 3)(0.785)\left(\right.$ Diameter $\left.^{2}\right)($ Height $)$
Volume of Cylinder* $=(0.785)\left(\right.$ Diameter $\left.^{2}\right)($ Height $)$
Volume of Rectangular Tank* $=($ Length $)($ Width $)($ Height $)$
Water Use, gpcd $=\frac{\text { Volume of Water Produced, gpd }}{\text { Population }}$
Water Use, Lpcd $=\frac{\text { Volume of Water Produced, Lpd }}{\text { Population }}$
Watts (AC circuit) $=($ Volts)(Amps)(Power Factor)
Watts (DC circuit) $=($ Volts $)(A m p s)$
Weir Overflow Rate, gpd/ft $=\frac{\text { Flow, gpd }}{\text { Weir Length, } \mathrm{ft}}$
Weir Overflow Rate, Lpd/m $=\frac{\text { Flow, Lpd }}{\text { Weir Length, } m}$
Wire-to-Water Efficiency, $\%=\frac{\text { Water } \mathrm{hp}}{\text { Motor } \mathrm{hp}} \times 100 \%$
Wire-to-Water Efficiency, $\%=\frac{(\text { Flow, gpm })(\text { Total Dynamic Head, ft) }(0.746 \mathrm{~kW} / \mathrm{hp})(100 \%)}{(3,960)(\text { Electrical Demand, } \mathrm{kW})}$

atmatmospheres	MG million US gallons
BOD5............biochemical oxygen demand	MGD........... million US gallons per day
C Celsius	min............. minutes
$\mathrm{CBOD}_{5} \ldots \ldots . . .$. carbonaceous biochemical	mL.............. milliliters
oxygen demand	ML million liters
cfs...............cubic feet per second	MLD million liters per day
cm..............centimeters	MLSS mixed liquor suspended solids
CODchemical oxygen demand	MLVSS........ mixed liquor volatile
DOdissolved oxygen	suspended solids
EMFelectromotive force	OCR oxygen consumption rate
F.................Fahrenheit	ORP oxidation reduction potential
F/M ratiofood to microorganism ratio	OUR oxygen uptake rate
ftfeet	PE population equivalent
ft lbfoot-pound	ppb parts per billion
g.................grams	ppm parts per million
gal..............US gallons	psi.............. pounds per square inch
gfdUS gallons flux per day	Q................ flow
gpcdUS gallons per capita per day	RAS return activated sludge
gpdUS gallons per day	RBC rotating biological contactor
gpggrains per US gallon	RPM revolutions per minute
gpmUS gallons per minute	SBOD $5 \ldots \ldots .$. Soluble BOD
hphorsepower	SDI sludge density index
hrhours	sec second
in................inches	SOUR.......... specific oxygen uptake rate
kg................kilograms	SRT solids retention time
km...............kilometer	SS settleable solids
kPakilopascals	$\mathrm{SSV}_{30} \ldots \ldots . . .$. settled sludge volume 30
kWkilowatts	minute
kWhkilowatt-hours	SVI sludge volume index
L.................liters	TOC total organic carbon
lb................pounds	TS total solids
Lpcdliters per capita per day	TSS total suspended solids
Lpdliters per day	VS volatile solids
Lpmliters per minute	VSS volatile suspended solids
LSILangelier Saturation Index	W............... watts
m.................meters	WAS........... waste activated sludge
MCRT..........mean cell residence time	yd............... yards
mgmilligrams	yr............... year

	1 inch $=2.54 \mathrm{~cm}$
$=4,046.9 \mathrm{~m}^{2}$	1 liter per second......... $=0.0864$ MLD
1 acre foot of water $\ldots . . .=326,000 \mathrm{gal}$	1 meter of water $=9.8 \mathrm{kPa}$
	1 metric ton $=2,205 \mathrm{lb}$
$=10.3 \mathrm{~m}$ of water	$=1,000 \mathrm{~kg}$
$=14.7 \mathrm{psi}$	1 mile $=5,280 \mathrm{ft}$
$=101.3 \mathrm{kPa}$	1.61 km
$\begin{aligned} 1 \text { cubic foot of water } \ldots & =7.48 \mathrm{gal} \\ & =62.4 \mathrm{lb} \end{aligned}$	1 million US gallons per day $=694 \mathrm{gpm}$ $=1.55 \mathrm{ft}^{3} / \mathrm{sec}$
1 cubic foot per second= 0.646 MGD	1 pound $=0.454 \mathrm{~kg}$
$=448.8 \mathrm{gpm}$	1 pound per square inch $=2.31 \mathrm{ft}$ of water
1 cubic meter of water .. $=1,000 \mathrm{~kg}$	$=6.89 \mathrm{kPa}$
$=1,000 \mathrm{~L}$	1 square meter $=1.19 \mathrm{yd}^{2}$
$=264 \mathrm{gal}$	1 ton........................... $=2,000 \mathrm{lb}$
1 foot $=0.305 \mathrm{~m}$	1\% $=10,000 \mathrm{mg} / \mathrm{L}$
1 foot of water $\ldots \ldots \ldots \ldots \ldots . .=0.433 \mathrm{psi}$	π or pi $=3.14$
$\begin{aligned} 1 \text { gallon (US) } \ldots \ldots \ldots \ldots \ldots . . & =3.785 \mathrm{~L} \\ & =8.34 \mathrm{lb} \text { of water } \end{aligned}$	Population Equivalent, hydraulic $=100$
1 grain per US gallon ... $=17.1 \mathrm{mg} / \mathrm{L}$	gal/person/day
1 hectare $=10,000 \mathrm{~m}^{2}$	$=378.5$
1 horsepower.............. $=0.746 \mathrm{~kW}$	L/person/day
$\begin{aligned} & =746 \mathrm{~W} \\ & =33,000 \mathrm{ft} \mathrm{lb} / \mathrm{min} \end{aligned}$	Population Equivalent, organic $=0.17 \mathrm{lb}$
	BOD/person/day
	$=0.077 \mathrm{~kg}$
	BOD/person/day

- To find the quantity above the horizontal line: multiply the pie wedges below the line together.
- To solve for one of the pie wedges below the horizontal line: cover that pie wedge, then divide the remaining pie wedge(s) into the quantity above the horizontal line.
- Given units must match the units shown in the pie wheel.
- When US and metric units or values differ, the metric is shown in parentheses, e.g. $\left(m^{2}\right)$.

Electromotive Force (EMF), Volts

Force, Ibs (Newtons)

Feed Rate, Ibs/day (kg/day)

Loading Rate, Ibs/day (kg/day)

Volume of Cylinder

Area of Right Triangle

Flow Rate, $\mathrm{ft}^{3} / \mathrm{sec}\left(\mathrm{m}^{3} / \mathrm{sec}\right)$

Mass, lbs (kg)

Volume of Rectangular Tank

