Formula/Conversion Table

Wastewater Treatment, Collection, Industrial Waste, & Wastewater Laboratory Exams

Alkalinity, mg/L as $CaCO_3 = \frac{(Titrant\ Volume,\ mL)(Acid\ Normality)(50,000)}{Sample\ Volume,\ mL}$

$$Amps = \frac{Volts}{Ohms}$$

Area of Circle* = (0.785)(Diameter²)

Area of Circle = (3.14)(Radius²)

Area of Cone (lateral area) = $(3.14)(Radius)\sqrt{Radius^2 + Height^2}$

Area of Cone (total surface area) = $(3.14)(Radius)(Radius + \sqrt{Radius^2 + Height^2})$

Area of Cylinder (total exterior surface area) = [End #1 SA] + [End #2 SA] + [(3.14)(Diameter)(Height or Depth)]

Where SA = surface area

Area of Rectangle* = (Length)(Width)

Area of Right Triangle* = $\frac{(Base)(Height)}{2}$

Average (arithmetic mean) = $\frac{\text{Sum of All Terms}}{\text{Number of Terms}}$

Average (geometric mean) = $[(X_1)(X_2)(X_3)(X_4)(X_n)]^{1/n}$ The nth root of the product of n numbers Biochemical Oxygen Demand (seeded), mg/L =

[(Initial DO, mg/L) - (Final DO, mg/L) - (Seed Correction, mg/L)] [300 mL] Sample Volume, mL

Biochemical Oxygen Demand (unseeded), mg/L =

 $\frac{\hbox{[(Initial DO, mg/L) - (Final DO, mg/L)][300 mL]}}{\hbox{Sample Volume, mL}}$

Blending or Three Normal Equation = $(C_1 \times V_1) + (C_2 \times V_2) = (C_3 \times V_3)$

Where $V_1 + V_2 = V_3$; C = concentration, V = volume or flow; Concentration units must match; Volume units must match

CFU/100mL = $\frac{[(\text{# of Colonies on Plate})(100)]}{\text{Sample Volume, mL}}$

Chemical Feed Pump Setting, % Stroke = $\frac{\text{Desired Flow}}{\text{Maximum Flow}} \times 100\%$

Chemical Feed Pump Setting, mL/min =

(Flow, MGD)(Dose, mg/L)(3.785 L/gal)(1,000,000 gal/MG)

(Feed Chemical Density, mg/mL)(Active Chemical, % expressed as a decimal)(1,440 min/day)

Chemical Feed Pump Setting, mL/min =

(Flow, m³/day)(Dose, mg/L)

(Feed Chemical Density, g/cm³)(Active Chemical, % expressed as a decimal)(1,440 min/day)

Circumference of Circle = (3.14)(Diameter)

Composite Sample Single Portion = $\frac{(Instantaneous Flow)(Total Sample Volume)}{(Number of Portions)(Average Flow)}$

Cycle Time, $min = \frac{Storage Volume, gal}{(Pump Capacity, gpm) - (Wet Well Inflow, gpm)}$

Cycle Time, min = $\frac{\text{Storage Volume, m}^3}{\text{(Pump Capacity, m}^3/\text{min)} - \text{(Wet Well Inflow, m}^3/\text{min)}}$

Degrees Celsius = $\frac{(°F - 32)}{1.8}$

Degrees Fahrenheit = (°C)(1.8) + 32

Detention Time = $\frac{\text{Volume}}{\text{Flow}}$ *Units must be compatible*

Dilution or Two Normal Equation = $(C_1 \times V_1) = (C_2 \times V_2)$ Where C = Concentration, V = volume or flow; Concentration units must match; Volume units must match

Electromotive Force, volts* = (Current, amps)(Resistance, ohms)

Feed Rate, $lb/day^* = \frac{(Dosage, mg/L)(Flow, MGD)(8.34 lb/gal)}{Purity, % expressed as a decimal}$

Feed Rate, kg/day* = $\frac{\text{(Dosage, mg/L)(Flow Rate, m}^3/\text{day})}{\text{(Purity, % expressed as a decimal)(1,000)}}$

Filter Backwash Rate, $gpm/ft^2 = \frac{Flow, gpm}{Filter Area, ft^2}$

Filter Backwash Rate, L/sec/m² = $\frac{\text{Flow, L/sec}}{\text{Filter Area, m}^2}$

Filter Backwash Rise Rate, in/min = $\frac{\text{(Backwash Rate, gpm/ft}^2)(12 \text{ in/ft})}{7.48 \text{ gal/ft}^3}$ Filter Backwash Rise Rate, cm/min = $\frac{\text{Water Rise, cm}}{\text{Time, min}}$ Filter Yield, lb/hr/ft² = (Solids Loading, lb/day)(Recovery, % expressed as a decimal) (Filter Operation, hr/day)(Area, ft²) Filter Yield, kg/hr/m² = (Solids Concentration, % expressed as a decimal)(Sludge Feed Rate, L/hr)(10) (Surface Area of Filter, m²) Flow Rate, ft³/sec* = (Area, ft²)(Velocity, ft/sec) Flow Rate, m³/sec* = (Area, m²)(Velocity, m/sec) Food/Microorganism Ratio = $\frac{BOD_5$, lb/day MLVSS, lb Food/Microorganism Ratio = $\frac{BOD_5$, kg/day MLVSS, kg Force, Ib* = (Pressure, psi)(Area, in²) Force, newtons* = (Pressure, pascals)(Area, m2) Hardness, as mg CaCO₃/L = $\frac{\text{(Titrant Volume, mL)(1,000)}}{\text{Sample Volume, mL}}$ Only when the titration factor is 1.00 of EDTA Horsepower, Brake, hp = $\frac{\text{(Flow, gpm)(Head, ft)}}{\text{(3,960)(Pump Efficiency, % expressed as a decimal)}}$ Horsepower, Brake, kW = $\frac{(9.8)(\text{Flow, m}^3/\text{sec})(\text{Head, m})}{(\text{Pump Efficiency, % expressed as a decimal})}$

Horsepower, Motor, kW =

Horsepower, Motor, hp =

(9.8)(Flow, m³/sec)(Head, m)

(Flow, gpm)(Head, ft)

(3,960)(Pump Efficiency, % expressed as a decimal)(Motor Efficiency, % expressed as a decimal)

(Pump Efficiency, % expressed as a decimal)(Motor Efficiency, % expressed as a decimal)

Horsepower, Water, hp =
$$\frac{\text{(Flow, gpm)(Head, ft)}}{3.960}$$

Horsepower, Water, kW = (9.8)(Flow, m³/sec)(Head, m)

Hydraulic Loading Rate,
$$gpd/ft^2 = \frac{Total Flow Applied, gpd}{Area, ft^2}$$

Hydraulic Loading Rate,
$$m^3/day/m^2 = \frac{Total Flow Applied, m^3/day}{Area, m^2}$$

Loading Rate, lb/day* = (Flow, MGD)(Concentration, mg/L)(8.34 lb/gal)

Loading Rate, kg/day* =
$$\frac{\text{(Flow, m}^3/\text{day)}(\text{Concentration, mg/L})}{1,000}$$

Mass, lb* = (Volume, MG)(Concentration, mg/L)(8.34 lb/gal)

Mass, kg* =
$$\frac{\text{(Volume, m}^3)\text{(Concentration, mg/L)}}{1,000}$$

Mean Cell Residence Time or Solids Retention Time, days =

Mean Cell Residence Time or Solids Retention Time, days =

Milliequivalent = (mL)(Normality)

$$Molarity = \frac{Moles of Solute}{Liters of Solution}$$

Motor Efficiency, % =
$$\frac{\text{Brake hp}}{\text{Motor hp}} \times 100\%$$

Number of Equivalent Weights =
$$\frac{\text{Total Weight}}{\text{Equivalent Weight}}$$

Number of Moles =
$$\frac{\text{Total Weight}}{\text{Molecular Weight}}$$

Organic Loading Rate-RBC, Ib SBOD₅/day/1,000 ft² = Organic Load, Ib SBOD₅/day

Surface Area of Media, 1,000 ft²

Organic Loading Rate-RBC, kg SBOD₅/m² days = $\frac{\text{Organic Load, kg SBOD}_5/\text{day}}{\text{Surface Area of Media, m}^2}$

Organic Loading Rate-Trickling Filter, lb BOD₅/day/1,000 ft³ = Organic Load, lb BOD₅/day

Volume, 1,000 ft³

Organic Loading Rate-Trickling Filter, kg/m 3 days = $\frac{\text{Organic Load, kg BOD}_5/\text{day}}{\text{Volume, m}^3}$

Oxygen Uptake Rate or Oxygen Consumption Rate, mg/L/min = $\frac{\text{Oxygen Usage, mg/L}}{\text{Time, min}}$

Population Equivalent, Organic = $\frac{(Flow, MGD)(BOD, mg/L)(8.34 lb/gal)}{0.17 lb BOD/day/person}$

Population Equivalent, Organic = $\frac{(Flow, m^3/day)(BOD, mg/L)}{(1,000)(0.077 \text{ kg BOD/day/person})}$

Power, kW = $\frac{(Flow, L/sec)(Head, m)(9.8)}{1,000}$

Reduction of Volatile Solids, % = $\left(\frac{\text{VS in- VS out}}{\text{VS in- (VS in \times VS out})}\right) \times 100\%$ All information (In and Out) must be in decimal form

Removal, % = $\left(\frac{\text{In - Out}}{\text{In}}\right) \times 100\%$

Return Rate, % = $\frac{\text{Return Flow Rate}}{\text{Influent Flow Rate}} \times 100\%$

 $\textbf{Return Sludge Rate-Solids Balance, MGD} = \frac{(\text{MLSS, mg/L})(\text{Flow Rate, MGD})}{(\text{RAS Suspended Solids, mg/L}) - (\text{MLSS, mg/L})}$

Slope, % = $\frac{\text{Drop or Rise}}{\text{Distance}} \times 100\%$

Sludge Density Index = $\frac{100}{SVI}$

Sludge Volume Index, mL/g = $\frac{(SSV_{30}, mL/L)(1,000 mg/g)}{MLSS, mg/L}$

Solids, mg/L =
$$\frac{\text{(Dry Solids, g)(1,000,000)}}{\text{Sample Volume, mL}}$$

Solids Capture, % (Centrifuges) =

$$\left[\frac{\text{Cake TS, \%}}{\text{Feed Sludge TS, \%}} \right] \times \left[\frac{\left(\text{Feed Sludge TS, \%} \right) - \left(\text{Centrate TSS, \%} \right)}{\left(\text{Cake TS, \%} \right) - \left(\text{Centrate TSS, \%} \right)} \right] \times 100\%$$

Solids Concentration, mg/L =
$$\frac{\text{Weight, mg}}{\text{Volume, L}}$$

Solids Loading Rate,
$$lb/day/ft^2 = \frac{Solids Applied, lb/day}{Surface Area, ft^2}$$

Solids Loading Rate, kg/day/m² =
$$\frac{\text{Solids Applied, kg/day}}{\text{Surface Area, m}^2}$$

Solids Retention Time: see Mean Cell Residence Time

Specific Gravity =
$$\frac{\text{Specific Weight of Substance, lb/gal}}{8.34 \text{ lb/gal}}$$

Specific Gravity =
$$\frac{\text{Specific Weight of Substance, kg/L}}{1.0 \text{ kg/L}}$$

Specific Oxygen Uptake Rate or Respiration Rate,
$$(mg/g)/hr = \frac{(OUR, mg/L/min) (60 min)}{(MLVSS, g/L) (1 hr)}$$

Surface Loading Rate or Surface Overflow Rate,
$$gpd/ft^2 = \frac{Flow, gpd}{Area, ft^2}$$

Surface Loading Rate or Surface Overflow Rate, Lpd/m² =
$$\frac{\text{Flow, Lpd}}{\text{Area, m}^2}$$

Total Solids,
$$\% = \frac{\text{(Dried Weight, g) - (Tare Weight, g)}}{\text{(Wet Weight, g) - (Tare Weight, g)}} \times 100\%$$

Velocity, ft/sec =
$$\frac{\text{Flow Rate, ft}^3/\text{sec}}{\text{Area, ft}^2}$$

Velocity, ft/sec =
$$\frac{\text{Distance, ft}}{\text{Time, sec}}$$

Velocity, m/sec =
$$\frac{\text{Flow Rate, m}^3/\text{sec}}{\text{Area, m}^2}$$

Velocity, m/sec =
$$\frac{\text{Distance, m}}{\text{Time, sec}}$$

Volatile Solids, % =
$$\left[\frac{\text{(Dry Solids, g) - (Fixed Solids, g)}}{\text{(Dry Solids, g)}}\right] \times 100\%$$

Volume of Cone* = $(1/3)(0.785)(Diameter^2)(Height)$

Volume of Cylinder* = (0.785)(Diameter²)(Height)

Volume of Rectangular Tank* = (Length)(Width)(Height)

Water Use,
$$gpcd = \frac{Volume of Water Produced, gpd}{Population}$$

Watts (AC circuit) = (Volts)(Amps)(Power Factor)

Watts (DC circuit) = (Volts)(Amps)

Weir Overflow Rate,
$$gpd/ft = \frac{Flow, gpd}{Weir Length, ft}$$

Weir Overflow Rate, Lpd/m =
$$\frac{\text{Flow, Lpd}}{\text{Weir Length, m}}$$

Wire-to-Water Efficiency,
$$\% = \frac{\text{Water hp}}{\text{Motor hp}} \times 100\%$$

Wire-to-Water Efficiency, % =
$$\frac{\text{(Flow, gpm)(Total Dynamic Head, ft)(0.746 kW/hp)(100\%)}}{(3,960)(\text{Electrical Demand, kW})}$$

Abbreviations

atmatmospheres	MG million US gallons
BOD ₅ biochemical oxygen demand	MGD million US gallons per day
CCelsius	min minutes
CBOD₅carbonaceous biochemical	mL milliliters
oxygen demand	ML million liters
cfscubic feet per second	MLD million liters per day
cmcentimeters	MLSS mixed liquor suspended solids
CODchemical oxygen demand	MLVSS mixed liquor volatile
DOdissolved oxygen	suspended solids
EMFelectromotive force	OCR oxygen consumption rate
FFahrenheit	ORP oxidation reduction potential
F/M ratiofood to microorganism ratio	OUR oxygen uptake rate
ftfeet	PE population equivalent
ft lbfoot-pound	ppb parts per billion
g grams	ppm parts per million
galŬS gallons	psi pounds per square inch
gfdUS gallons flux per day	Q flow
gpcdUS gallons per capita per day	RAS return activated sludge
gpdUS gallons per day	RBC rotating biological contactor
gpggrains per US gallon	RPM revolutions per minute
gpmUS gallons per minute	SBOD₅ Soluble BOD
hphorsepower	SDI sludge density index
hrhours	sec second
ininches	SOUR specific oxygen uptake rate
kgkilograms	SRT solids retention time
kmkilometer	SS settleable solids
kPakilopascals	SSV ₃₀ settled sludge volume 30
kW kilowatts	minute
kWh kilowatt-hours	SVI sludge volume index
Lliters	TOC total organic carbon
lbpounds	TS total solids
Lpcd liters per capita per day	TSS total suspended solids
Lpd liters per day	VS volatile solids
Lpmliters per minute	VSS volatile suspended solids
LSILangelier Saturation Index	W watts
m meters	WAS waste activated sludge
MCRTmean cell residence time	yd yards
mgmilligrams	yr year

Conversion Factors

40.500.42	4 to a la
1 acre = 43,560 ft ²	1 inch = 2.54 cm
$= 4,046.9 \text{ m}^2$	1 liter per second = 0.0864 MLD
1 acre foot of water = 326,000 gal	1 meter of water = 9.8 kPa
1 atm = 33.9 ft of water	1 metric ton = 2,205 lb
= 10.3 m of water	= 1,000 kg
= 14.7 psi	1 mile = 5,280 ft
= 101.3 kPa	= 1.61 km
1 cubic foot of water = 7.48 gal	1 million US gallons per day = 694 gpm
= 62.4 lb	
	$= 1.55 \text{ ft}^3/\text{sec}$
1 cubic foot per second= 0.646 MGD	1 pound = 0.454 kg
= 448.8 gpm	1 pound per square inch = 2.31 ft of water
1 cubic meter of water= 1,000 kg	= 6.89 kPa
= 1,000 L	1 square meter = 1.19 yd ²
= 264 gal	1 ton = 2,000 lb
1 foot = 0.305 m	1% = 10,000 mg/L
1 foot of water = 0.433 psi	π or pi = 3.14
1 gallon (US) = 3.785 L	Population Equivalent,
= 8.34 lb of water	hydraulic = 100
1 grain per US gallon = 17.1 mg/L	gal/person/day
1 hectare = 10,000 m ²	= 378.5
,	
1 horsepower = 0.746 kW	L/person/day
= 746 W	Population Equivalent,
= 33,000 ft lb/min	organic = 0.17 lb
	BOD/person/day
	= 0.077 kg
	BOD/person/day
	DOD/person/day

- To find the quantity above the horizontal line: multiply the pie wedges below the line together.
- To solve for one of the pie wedges below the horizontal line: cover that pie wedge, then divide the remaining pie wedge(s) into the quantity above the horizontal line.
- Given units must match the units shown in the pie wheel.
- When US and metric units or values differ, the metric is shown in parentheses, e.g. (m²).

